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Hyperspectral band selection is a key factor in creating practical, accurate pre-

dictive models for remote sensing applications. A proper subset of bands can contain

the same information, with less noise, than the complete set of bands. This can lead

to both an increase in accuracy and a decrease in computational complexity. The

problem then becomes: how does one determine which bands to use? We first dis-

cuss the implications of sampling theory, the No Free Lunch Theorem, sensor noise,

and information redundancy in feature subset selection. We then present a generic

methodology that directly follows from these implications to select the optimal subset

of bands and prediction model together. This method is called Rank Ordering with

Accuracy Selection (ROWAS), and works as follows. The bands are ranked by several

computationally efficient measures of information content and redundancy. Then, in-

creasing numbers of top ranked bands are evaluated with different prediction methods

using the cross-validated accuracy as a metric. The ensuing analysis provides an op-

timal set of bands, along with the best prediction model. This methodology satisfies

all of the design constraints, and provides a good tradeoff between exploration of the

feature space and computation time.

We apply this generic methodology to the domain of hyperspectral band selec-

tion by developing ranking methods that assume the data is a sampled continuous

spectrum. Experimental results for both a numeric prediction and classification task

are presented. These experiments are the the prediction of electrical soil conductiv-

ity in a pre-growing season farm field and the classification of grass types based on

hyperspectral, airborne imagery. For both problems, ROWAS achieves a high level
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of accuracy appears to be near the optimal accuracy possible for the problem. In

the case of the grass-type classification, this is confirmed using a McNemar test for

statistical significance.
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Chapter 1

Introduction

Remote sensing provides a means to compile data with varying spectral and spatial

resolution over large geographic areas by mounting sensors from airplanes or satel-

lites. The resulting spectral data has a wide range of applications in environmental

monitoring [1, 2, 3, 4], sensor design [5, 6], geological exploration [7, 8], agriculture

[9], forestry [10], security [11], cartography, and the military [12, 13]. In nearly all

applications, the underlying problem is the desire to use spectral information to pre-

dict certain properties of the objects being imaged. This can involve predicting a

categorical/discrete variable, often termed classification, or predicting a continuous

variable, known as regression.

To provide greater spectral resolution, hyperspectral imagery is often used to

model a remotely sensed scene. In hyperspectral imagery, the electromagnetic spec-

trum is sampled at tens, hundreds or even thousands of wavelength ranges in the

visible and near infrared (NIR) specta, hereafter called bands. The result is a very

detailed view of the spectral signature of the scene represented by a particular pixel.

The additional information comes at a cost, however. With more features to use

for prediction comes additional noise, redundancy, and model complexity that can

degrade accuracy [14]. Practical considerations such as computation time, storage,

and communication bandwidth must also be acknowledged for the sake of end user
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applications.

Problem Statement

Find the subset of hyperpectral bands that efficiently maximizes the accuracy of a

predictive model using an algorithm that is efficient in terms of both computation

time and user effort.

This thesis focuses on the role of feature selection (band selection) in hyperspec-

tral image classification. A method for balancing the tradeoffs between exploration

of feature subset search space and computation time is proposed. Theoretical and

practical considerations are discussed, and experimental results for both classification

and regression are presented.

1.1 Prediction Models

In this thesis we define a prediction model to be an empirically derived function that

provides a one-to-one or many-to-one mapping from a set of input features to a set

of predicted output values. Both input and outputs can be categorical, nominal, or

continuous variables. Here we are mainly concerned with the case of continuous input

features, as that is the form of the hyperspectral data. To provide some degree of

robustness, however, we will explore the prediction of both continuous and categorical

data. The general framework we will develop can be applied to data of any form.

In the field of remote sensing, models can generally be put into one of two cate-

gories: pixel based classifiers and spectral-spatial classifiers [15]. Pixel based classifiers

assume that the output variable is a function solely of the spectral information con-

tained in a pixel. Spectral-spatial classifiers use the spectral information as well as

the spectral information of surrounding pixels, giving the model a degree of spatial, or

contextual, response. Here we focus on pixel based classifiers as they have the form of
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most statistical or machine learning modeling techniques. This form is characterized

by having a set of features that are thought to have equal relevance a priori to the

model building process and have no direct interaction between them. That is, there

are no features that are calculated as functions of other features, although this does

not mean they are not correlated or statistically dependent.

1.2 Previous Work

As the amount of data being collected increases at an exceptional rate feature subset

selection has been a key subject in many areas that use data mining and modeling.

There is therefore a large body of work of both general methods and those related

specifically to hyperspectral data. We will briefly present some of these methods by

categorizing them first as either top-down or bottom-up, and then as either filter or

wrapper methods.

The basic heuristic of many feature selection techniques can be called top-down

or bottom-up selection schemes [14]. Top-down algorithms start with the entire set

of features and iteratively remove the worst feature(s). Bottom-up methods work in

reverse, starting with no features and adding the best. What determines the best

or worst feature is determined by the particular implementation. Often a simple

statistical significance test such as correlation is used. That is, a good feature will

have little correlation with the other input features and high correlation with the

predicted variable.

A somewhat more sophisticated measure is used by the wrapper method, for-

malised by Kohavi and John [16]. The Wrapper Method scores a subset of features

based on the cross-validation accuracy of a prediction model. This allows it to be used

with greedy top-down and bottom-up methods [17], as well as more robust optimizers

such as genetic algorithms. Yang and Honavar, for example, proposed a genetic algo-
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rithm, neural network wrapper combination that provided high classification accuracy

[18].

Selection techniques that do not consider the prediction model (as wrapper meth-

ods do) are often termed filter methods. This can include methods such as the

aforementioned correlation tests. A flaw common to many filter techniques is the

tendency to throw out both features if two are found to contain the same information.

Kohavi and John explored this topic in [17] and concluded that wrapper methods are

therefore generally superior to filter methods.

Recently, Tsamardinos and Aliferis refuted that claim based on the No Free Lunch

Theorem (NFL) [19]. The NFL applies to any optimization algorithm. At its core, it

states that no optimization algorithm is better than another when the performance

is averaged over all possible problems [20]. The NFL theorem is an integral part

of the methodology developed in this thesis, and will be discussed further in Section

2.2. Tsamardinos and Aliferis concluded that because of the NFL theorem, filters can

be as accurate as wrapper methods, provided they take into account the prediction

model and error metric being used.

1.2.1 Hyperspectral Band Selection

Because of the many applications of remote sensing, considerable work has been

done in hyperspectral feature selection. Such work may deviate from general feature

selection methods because of the specific structure of hyperspectral data. Namely,

bands (features) that are near each other in the spectrum are likely to share certain

properties and be highly correlated.

Closely related to feature selection is feature extraction. In feature extraction new

features are generated that contain the same amount of information as the original fea-

ture set, but in a lower dimension space. Examples of this are Principle Component

Analysis (PCA), Independent Component Analysis (ICA), and wavelet transforms
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[21]. In this work we have avoided feature extraction for two reasons. One is that

it is difficult to interpret the results of an analysis based on extracted features. An-

other is that they make a prediction system less generic, as they can rely on certain

assumptions about the structure of the data that we are trying to avoid.

While a few band selection techniques have been proposed, such as the ICA based

selection procedure described in [22], they are far less common than extraction meth-

ods.

1.3 Methodology Overview

To overcome the obstacles mentioned above (which will be elaborated on in Section

2.3), we propose a new method: Rank Ordering with Accuracy Selection, or ROWAS.

The basic structure of the methodology is simple. First use computationally efficient

unsupervised methods to rank order bands based on their information content and

distinctiveness. Then, use a wrapper approach with a supervised prediction algorithm

to evaluate sets of top ranked bands. The experimentally determined optimal accu-

racy will reveal the prediction model, band suitability measure, and number of bands

that are best suited for a given problem. A variety of unsupervised and supervised

methods are used to remove the need for a priori knowledge of the underlying struc-

ture of the data. We will in this study, however, use several unsupervised methods

that do take into account the spectral relationship of the input features.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 3 formalizes the consid-

erations a modern feature extraction system must resolve, and discusses how ROWAS

meets those challenges. Chapter 4 gives a detailed listing of the unsupervised and

supervised methods we propose for use in a ROWAS system meant for use in the
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hyperspectral domain. Two experimental data sets, one with a categorical predicted

variable and one with a continuous predicted variable are analyzed using ROWAS in

Chapter 5. Finally, a summary of the results and our conclusions are presented in

Chapter 6.
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Chapter 2

Rank Ordering With Accuracy

Selection: A Feature Selection

Methodology

2.1 Feature Selection

The problem of feature selection is not unique to the field of hyperspectral remote

sensing. The related fields of statistical modeling, pattern recognition, and machine

learning share the fundamental problems caused by improper feature selection. The

four main concerns that have driven the field of feature selection are computation

time, redundancy, irrelevance, and the so-called Hughes Phenomenon [23]. A brief

discussion of each is given below.

In building a predictive model through machine learning techniques, the number

of possible models increases exponentially with the number of features. That is not

to say training methods will consider all possible models, but this indicates that the

search space for the appropriate model is much larger. Take, for instance, a simple

decision tree. The greedy tree building mechanism normally employed causes the

building time for a binary tree to be roughly O(mn2(log n)) where m is the number
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of features and n is the number of training examples [20]. This is a heuristic to find

a good solution to what is actually an NP-hard problem [24] (NP-hard problems can

loosely be defined as those that take exponential time to solve). Therefore, while

the actual computation time will increase only linearly with additional features, the

search space will increase exponentially, making it more difficult for the greedy hill-

climbing style algorithm to find the global optimum. This reasoning applies to other

modeling algorithms that partition the feature space directly, such as support vector

machines (SVM), as well.

2.1.1 Noise and Irrelevance

While the Hughes Phenomenon of Section 2.1.2 and the sampling considerations of

2.1.3 provide arguments for the theoretical optimal size for a subset of features, two

issues that could possibly dominate the problem have not been mentioned. They are

noise and irrelevance. If a feature has a very poor signal-to-noise ratio, it is apparent

that the ability to use that feature in a modeling situation will be degraded. Likewise,

if a feature is completely unrelated to the variable being predicted, the information

contained in that feature will appear the same as noise to the prediction model.

2.1.2 Hughes Phenomenon

Related to the problem of an exponential increase in the size of the model search

space (given above) is what has become known as the Hughes Phenomenon, based on

the findings of Gordon Hughes in 1968 [23]. Fundamentally, the Hughes Phenomenon

is that the density of a fixed amount of data points decreases as the number of di-

mensions increases, inhibiting the ability to make reliable estimates of the probability

distribution. The result is that there is an optimal number of features to use for

a given number of data points (assuming they are all valid and dependent on the

predicted class).
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Table 2.1: Example data to demonstrate the Hughes Phenomenon. One and two
dimensional histograms are given in Figure 2.1.

X1 1 2 3 3 4 4 4 5 5 6 7 7

X2 4 1 6 3 3 4 3 2 7 4 5 5

0

1

2

3

X1 Distribution

x1

C
o

u
n
t

(a) A histogram showing the sample

of X1 from Table 2.1.

0

1

2

3

X2 Distribution

x2

C
o

u
n
t

(b) A histogram showing the sample

of X2 from Table 2.1

(c) A histogram of X1 and X2 together. Note that little can be determined about the distribution

of the underlying distribution given the small sample size.

Figure 2.1: A demonstration of the Hughes Phenomenon. Estimates of the dis-
tributions of the variables given in Table 2.1 can be made based on the univariate
histograms, but not on the bivariate histogram.

9



A simple example is given in Figure 2.1. One dimensional histograms of the data

given in Table 2.1 are shown in Figures 2.1(a) - 2.1(b). With the data given, the

trends of the one-dimension probability distribution functions (PDF’s) have begun

to emerge and the parameters of a Gaussian distribution could be estimated with

some confidence. The same is not true of the joint probability distribution shown in

Figure 2.1(c). The same number of data points in a larger dimension space appear

more sparse. Even if a multi-variate Gaussian model was assumed, the parameters

estimated from the given data would not be very trustworthy. As the number of

dimensions increases with a fixed number of data points, it is easy to imagine how

the problem would simply get worse.

2.1.3 Implications of the Central Limit Theorem

While the Hughes Phenomenon shows how even correct data can be misleading if

there is not enough data to make density estimates in a high dimension space, there

is also an argument for collecting data with as many dimensions as possible, but only

using a subset of those dimensions.

The Central Limit Theorem is one of the foundations of modern statistics. It states

that for samples of a given size, taken from identical distributions, the sample means

will themselves converge to a normal distribution, even if the sampled population has

some non-normal form. What is more, the variance of the means over the different

samples is a function on the size of the sample, as is how closely the distribution can

be approximated with a normal distribution. That is, as the sample size increases,

the distribution of sample means becomes more normal and has a smaller variance

[25].

This has important implications for the problem of feature subset selection. As-

sume we have a fixed data set size of n samples and m features. Let X1, X2, ..., Xm

be the sample sets of size n. If for all {i : 1 < i ≤ m} the (true) population distri-
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Figure 2.2: An example of sampling errors leading to poor accuracy. Note that
the misclassified region is larger when both dimensions are used, as opposed to only
X2. Also, the red points all fall within the true class boundaries, the sample mean is
simply different than the population mean, mainly due to insufficient sample size.

butions have mean µi and variance σ2
i , then E(X̄i) = µi and V (X̄i) = σ2

i /n [25]. We

therefore have a situation where any sampled set Xi has a mean that is most likely

to be its true population mean, but with a variance proportional to σ2
i and inversely

proportional to (the constant value) n. We can therefore conservatively conclude that

out of the m features, “some” of the samples will have estimated parameters (namely,

mean) that more closely represent their true population parameters than others. If

we set a threshold η to accept or reject a feature’s sample as adequate by the rule

η < |µi− X̄i|, it is obvious that the expected number of features that satisfy the rule

will increase as the number of total features m increases.

A demonstration of how this could affect a classifier is given in Figure 2.1.3. A

simple binary classifier is shown that can classify by one of three metrics: minimum

distance to the class mean in the X1 dimension, minimum distance to the class mean

in the X2 dimension, and minimum distance to the class mean in both dimensions.
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Both the true boundaries and the boundaries that would be calculated from the

observed data are shown. Note that because the observed mean forX1 does not match

the true class mean for the red class, there is a significant region of misclassified points

when using either X1 alone or X1 and X2. Furthermore, all of the red points fall

in the true class boundaries, and are therefore not excessively noisy. The probability

that the misclassification regions would be reduced would increase if more red data

points were included.

It should be noted that the effects of sampling errors will becoming insignificant

as the size of the data set n becomes substantial. However, we are mainly concerned

with applications where data are expensive, and we cannot require many labeled

points in our algorithms, as we are unlikely to get them. For instance, why would

we try to predict features on the ground using a satellite if it was easy to determine

the features through direct measurement? The very problem is that we do not have

many labeled points and would like a new, cheaper way to label more.

Unfortunately, as the population means µi are unknown, we can not use the

above thresholding technique directly for feature selection. The analysis does tell

us something about what a feature selection algorithm must consider, however. For

any two data sets, even if they are sampled from the same population, the features

that more accurately represent the true population will likely change from sample to

sample.

If we combine this conclusion with the Hughes Phenomenon, we see that for a

given sample size, there is a fixed limit for an ideal number of features k for achieving

optimal model accuracy, and a high likelihood that the features will have an ordering

from most representative of their populations to (admittedly marginally) unrepre-

sentative of those populations. We believe that this provides further evidence that

feature selection from a large set of features is superior to feature extraction or di-

mensionality reduction techniques because poor features will influence the final data
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set in the latter but not in the former.

2.2 No Free Lunch Theorem

As mentioned in Section 1.2, the No Free Lunch Theorem (NFL) states that the

accuracy of any two optimization algorithms are equal when averaged over the set

of all possible problems [20]. This has important consequences not just for feature

selction, but also predictive modeling in general. In order to have a robust feature

selection and modeling system, that system must be able to deal with the reality that

the best model may change from one domain to another, just as the best feature

selection scheme may change. Furthermore, the best feature selection scheme may

depend not only the domain, but on which model is best.

Traditionally, the NFL theorem has led to the doctrine that a domain expert must

analyze the problem as much as possible in order to intelligently prune the search

space of potential optimizers. We feel, however, that as the computation power of

modern desktop machines increases, and the advancement of distributed and parallel

computing techniques continues, that the cost of additional computations will pale in

comparison to the cost of a domain expert’s time.

2.3 ROWAS

With the problems and issues surrounding feature selection defined, we are ready to

present our proposed methodology. First, let us summarize the considerations we

wish to resolve.

Hughes Phenomenon As the number of dimensions increases, the density of a

fixed number of data points decreases in the space. This makes it more difficult

to reliably estimate density functions in higher-dimensional spaces. For a given
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problem with a set number of data points, there is an optimal number of features

to use in a predictive model. (Section 2.1.2)

Sampling Reliability The distributions of samples will vary from their true popu-

lations by known probabilistic rules, defined by the Central Limit Theorem. As

the number of features to choose from increases, the likelihood of being able to

find a good subset of a certain size increases. (Section 2.1.3)

Irrelevance If a feature is unrelated to the variable being predicted, that feature is

no different than noise, and can only degrade accuracy. (Section 2.1.1)

Noise Regardless of the cause of the noise, a model trained on noisy data will not

be able to correctly make generalizations about the relationship between input

features and predicted features.(Section 2.1.1)

No Free Lunch There is no optimization technique that is superior in all domains.

Without prior domain knowledge, there is no reason to prefer one over another.

This has two implications here:

• The best prediction model can not be determined in advance

• The best feature selection technique will depend on the prediction model

used.

(Section 2.2)

Computer Vs. Expert’s Time A domain expert’s time is valuable, and will re-

main valuable. A computer’s time is continually becoming cheaper. There is

little reason to use a domain expert’s time for a job a computer can do, so long

as the computer does not take considerably longer. (Section 2.2)
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2.3.1 Proposed Methodology

To overcome the above restrictions, we propose to rank order the hyperspectral bands

by various metrics of information content, and then evaluate the prediction error of

the i top bands at a time using different prediction models, where i starts near 1

and is incremented by some small value (in our experiments, i starts at 2 and has an

increment size of 2). The error is considered to be the lowest error obtained when

the parameters of the prediction model are optimized. For instance, in the k-nearest

neighbors algorithm, k is optimized. We again leave the actually optimization process

as an abstraction (in our experiments we will simply use a random optimizer; one

that tries 100 random parameter sets and selects the best). Cross-validation is used

to obtain a reliable estimate of the model accuracy for a given combination of features

and model parameters.

Using this method of evaluating top ranked bands, we can reformulate our main

optimization problem to that of finding the best combination of ranking method,

prediction model, and number of top bands to use. This reduces the problem to one

that is on the cusp of being computationally infeasible, taking an amount of time on

the order of a few days when run on multiple modern computers for a 200 band data

set.

This system proves to be robust for the following reasons. It is apparent that

several of the considerations given at the beginning of Section 2.3 imply that there

is an ordering from best to worst. The sampling reliability consideration suggests

that some samples will be more representative than others. There is also an ordering

in terms of noise, and one in terms of irrelevance. We do not know how many top

bands to use, so we evaluate subsets containing varying numbers of top bands to find

the optimal point, thus making the Hughes Phenomenon work for us, not against us.

Finally, we do not know which ranking or prediction methods are best because of the

NFL theorem, so we will test a variety of combinations. This allows us to implement
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the system once, letting the computer do the work in any domains explored later.

We therfore believe that our proposed system addresses all of the issues described in

Section 2.3.

In this work, seven unsupervised ranking methods and three prediction methods

are explored for both continuous and categorical prediction. The ranking methods

can loosely be grouped into two categories. The first are those based on measures of

a individual band’s information content. The most straightforward is a common en-

tropy measure. The other technique that falls into this category is our spatial contrast

measure, which indicates the level of discrimination a band provides if we consider

every pair of spatially adjacent data points to belong to some differing, unknown cat-

egories. The other category consists of those methods based on redundancy among

multiple bands. These methods work mainly by penalizing bands for being similar

to others, and then selecting those that are least penalized. Included in this category

are methods based on the correlation between pairs of bands, the predictability of

one band based on the bands adjacent to it in the spectrum, a band’s contribution

to a principal components analysis, and the degree to which a pair of bands’ spectral

ratio differs from the average spectral ratio over all pairs of bands. The supervised

methods are näıve bayes, C4.5 decision tree, and fuzzy k-nearest neighbors for cate-

gorical prediction. Linear regression, fuzzy k-nearest neighbors, and regression tree

are used for continuous value prediction.

The following chapter presents detailed descriptions of both the unsupervised (3.1)

and supervised (3.2, 3.3) methods used in this work. It should be stressed that the

general framework does not depend on the specific methods employed. In fact, the

orthogonality of the choice of methods is considered a major strength of ROWAS.
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Chapter 3

Ranking and Prediction Methods

In this chapter we present the unsupervised ranking and supervised prediction meth-

ods we propose for use with ROWAS in a hyperspectral domain. The same ranking

methods are used for both classification and regression experiments. As for predicition

methods, linear regression and näıve bayes are unique to regression and classification,

respectively. Standard implementations of k-nearest neighbors and decision trees are

used for classification, and are then adapted for use in continuous value prediction

(regression).

First, let us define our notation. Let X be an m dimensional vector of spectral

intensity variables X1, X2, ..., Xm related to a single pixel. Xi = xi = I(φ, λi) is

the measured intensity value of the band with central wavelength λi at geographic

location φ. Let Y be a ground measurement known as the label. In a classification

problem, Y = cj where cj ∈ C when C is the set of possible classes. In numeric

prediction, Y takes on a particular continuous value y when sampled. A labeled data

point, or example, is therefore an (X, Y ) pair. A set S of examples is split into a

subset of training examples T where T ⊂ S and testing examples R where R = S−T

in order to measure accuracy. (T and R are randomly selected multiple times during

cross-validation.)

In general, we relax the notation normally used to distinguish free variables from
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samples in order to simplify the syntax. For example, P (X|Y ) is substituted for

P (X1 = x1, X2 = x2, ...Xm = xm|Y = y).

3.1 Unsupervised Ranking Methods

3.1.1 Information Entropy

This method is based on evaluating each band separately using the information en-

tropy measure ([26], chapter 3) defined below.

H(λi) = −
l
∑

k=1

P (νi
k) lnP (νi

k) (3.1)

P (νi
k) = P (mini

k ≤ Xi < maxi
k) (3.2)

H is the entropy measure of the band with central wavelength λi. Equation 3.2

merely formalizes that the probability distribution function of the intensity value Xi

is estimated via a histogram. Each bin k used to estimate the probability for a range

of values of Xi is defined by {mini
k,maxi

k}. l is the number of bins used in each

histogram. Generally, if the entropy value H is high then the amount of information

in the data is large. Thus, the bands are ranked in the ascending order from the band

with the highest entropy value (large amount of information) to the band with the

smallest entropy value (small amount of information).

3.1.2 First Spectral Derivative

The bandwidth, or wavelength range, of each band is a variable in a hyperspectral

sensor design [6, 5]. This method explores the bandwidth variable as a function of

added information. It is apparent that if two adjacent bands do not differ greatly then

the underlying geo-spatial property can be characterized with only one band. The

mathematical description is shown below in Equation 3.3, where differences between
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sampled adjacent bands Xi and Xi+1 are summed for all examples in the set S. Thus,

if D1 is equal to zero then one of the bands is redundant. In general, the adjacent

bands that differ significantly should be retained, while similar adjacent bands can

be reduced.

D1(Xi) =
∑

S

|xi − xi+1| (3.3)

3.1.3 Second Spectral Derivative

Similar to the first spectral derivative, this method explores the bandwidth variable

in hyperspectral imagery as a function of added information. If three bands are

adjacent, and the outer bands can be used to predict the center band through linear

interpolation, then the center band is redundant. The larger the deviation from

a linear model, the higher the information value of the band. The mathematical

description of this method is shown below, where D2 represents the measure of linear

deviation of band Xi.

D2(Xi) =
∑

S

|xi−1 − 2xi + xi+1| (3.4)

3.1.4 Contrast Measure

This method is based on the assumption that each band could be used for classification

purposes by itself. The usefulness of a band would be measured by a classification

error achieved by using only the band under consideration and minimizing the error.

In order to minimize a classification error, it is desirable to select bands that provide

the highest amplitude discrimination (image contrast) among classes. If the class

boundaries were known a priori then the measure would be computed as a sum of

all contrast values along the boundaries. However, the class boundaries are unknown

a priori in the unsupervised case. One can evaluate contrast at all spatial locations
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instead assuming that each class is defined as a homogeneous region (no texture

variation within a class). The mathematical description of the contrast measure

computation is shown below for a discrete case.

ContrastM(Xi) =
m
∑

j=1

|fj − E(f)| ∗ fj (3.5)

f is the histogram (estimated probability density function) of all contrast values

computed across one band by using a Sobel edge detector ([26], Chapter 4). E(f) is

the sample mean of the histogram f . m is the number of distinct contrast values in a

discrete case. The equation includes the contrast magnitude term and the term with

the likelihood of contrast occurrence. In general, bands characterized by a large value

of ContrastM are ranked higher (good class discrimination) than the bands with a

small value of ContrastM .

In the upcoming experimental results (Chapter 4), the contrast based unsuper-

vised method utilized the fact that the hyperspectral examples extracted from the

hyperspectral image were spatially ordered along a geo-spatial line (row). Our im-

plemenation therefore assumed that the ordering of the examples could be used to

determine adjacency for use in the Sobel edge detector.

3.1.5 Spectral Ratio Measure

In many practical cases, band ratios are effective in revealing information about in-

verse relationship between spectral responses to the same phenomenon (e.g., living

vegetation using the normalized difference vegetation index ([27], Chapters 16.6 and

17.7). This method explores the band ratio quotients for ranking bands and identifies

bands that differ just by a scaling factor. The larger the deviation from the average of

ratios E(ratio) over the entire image, the higher the RatioM value of the band. The

mathematical description of this method is shown below, where RatioM represents

the measure of band Xi based on the samples of set S.
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RatioM(Xi) =
∑

S

∣

∣

∣

∣

xi

xi+1

− E

(

Xi

Xi+1

)∣

∣

∣

∣

(3.6)

3.1.6 Correlation Measure

One of the standard measures of band similarity is normalized correlation [20]. The

normalized correlation metric is a statistical measure that performs well if a signal-

to-noise ratio is large enough. The correlation based band ordering computes the

normalized correlation measure for all pairs of bands similar to the spatial autocorre-

lation method applied to all ratios of pairs of image bands in [3]. Considering all pairs

of bands and not just those that are spatially adjacent is an important distinction

of the correlation based method. The mathematical description of the normalized

correlation measure is shown below, where CorM(Xi, Xj) represents the measure. E

denotes an expected value and σ is a standard deviation.

CorM(Xi, Xj) =
E(Xi ∗Xj)− E(Xi) ∗ E(Xj)

σ(Xi) ∗ σ(Xj)
(3.7)

After selecting the first least correlated band based on all other bands, the sub-

sequent bands are chosen as the least correlated bands with the previously selected

bands. This type of ranking is based on mathematical analysis of [12], where spec-

trally adjacent blocks of correlated bands are represented in a selected subset.

3.1.7 Principal Component Analysis Ranking (PCAr)

Principal component analysis has been used very frequently for band selection in the

past [27]. The method transforms a multidimensional space to one of an equivalent

number of dimensions where the first dimension contains the most variability in the

data, the second the second most, and so on. The process of creating this space

gives two sets of outputs. The first is a set of values that indicate the amount of

variability each of the new dimensions in the new space represents. These values are
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known as eigenvalues (ε). The second is a set of vectors of coefficients, one vector for

each new dimension, that define the mapping function from the original coordinates

to the coordinate value of a new dimension. The mapping function is the sum of

the original coordinate values of a data point weighted by these coefficients. As a

result, the eigenvalue εj indicates the amount of information in a new dimension

j. The coefficients cij indicate the influence of the original dimension i on this new

dimension j. Our PCA based ranking system (PCAr) makes use of these two facts

by scoring the bands (the “original” dimensions in the above discussion) by Equation

3.8.

PCAr(Xi) =
∑

j

|εjcij| (3.8)

As the procedure for computing the eigenvalues and coefficients is both complex

and available in most data analysis texts [20], it is omitted.

3.1.8 Spectral Spacing

This method uses no information specific to the data set under consideration. Band

are ranked so that for any set of top k bands, those k bands are as evenly spaced

in terms of their central wavelengths as possible. For example, if 100 bands were

to be ranked, their order would be {50, 1, 100, 25, 75, . . .}. While this method may

seem trivial, it actually takes into account a significant amount of domain specific-

knowledge: bands that are near each other in the spectrum almost certainly contain

similar information, bands that are far apart likely contain relatively unique informa-

tion. From a data analysis point of view, incorporating such domain knowledge often

can be more useful than any computed knowledge, no matter how sound the theory

behind it may be.
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3.2 Supervised Classification Methods

3.2.1 Näıve Bayes

Bayes law (3.9) provides the posterior probability of an event ci occuring given that

event X has occured based on the the prior probabilities of ci and X, as well as the

posterior probability of event X given ci. Here, this provides a means of calculating

the probability of each possible class ci given a spectral signatureX and then selecting

the class with the highest probability P (ci|X) as the prediction. P (ci) can easily be

estimated from the set of training examples and P (X), which is constant between

classes, can be ignored as the classifier scheme is simply comparing the probabilities of

different classes. To calculate the value of P (X|ci), conditional independence amongst

attributes (here, spectral bands) is assumed (hence the name Näıve Bayes). This

allows the use of Equation 3.10.

P (ci|X) =
P (X|ci)P (ci)

P (X)
(3.9)

P (X|ci) =
∏

k

P (Xk|ci) (3.10)

In our implementation, the continuous variables Xk are binned, and estimated

probabilities based on training data are stored in a histogram for every (ci, Xk) pair

for use in Equation 3.10. This introduces the need for control parameters for the

binning method. The first parameter is a switch to select either binning by width or

binning by depth. Binning by width takes a single interval size that all bins are given,

with the lower bound of the first bin being the minimum value of the training set. In

binning by depth, all bins are required to have an equal number of training examples,

and the interval size is therefore variable between bins. The second parameter is

therefore either the interval size or number of examples per bin, depending on which
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method is indicated by the first parameter. These parameters are optimized by the

technique described in Section 2.3.1

3.2.2 Fuzzy K-Nearest Neighbors

K-nearest neighbors classifiers, sometimes called instance based classifiers [28], [14],

make a prediction for a test case based on the classes of the k training examples

that have the smallest euclidean distance to that test case. The training stage of

model building is therefore nothing more than storing the training examples. During

prediction the distances to all n training examples must be calculated for each test

case, and the k smallest (where k is a user defined control parameter) are selected.

Often, the prediction is made by a simple majority-rules vote of these k nearest

neighbors. Here, however, we bias the votes by the inverse of the distance to the test

case, raised to the power w (another control parameter). This gives training examples

with a smaller distance a higher weight in the voting. The weighted “vote” for each

possible class ci is therefore given by

V (ci) =
∑

e∈{e:Ye=ci}

1

dw
e

(3.11)

where Ye is the class of training example e, and de is the euclidean distance

de =

√

∑

k

(Xk −Xe
k)

2 (3.12)

from the training example to the test case in the spectral space. The number of

neighbors k and the exponent weight w are optimized using the technique of Section

2.3.1.

3.2.3 C4.5 Decision Tree

A decision tree is a recursive search structure that can take on one of two forms: (1)

a leaf, which has an associated class, or (2) a node that contains a test on a single
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attribute of the examples, and a branch and subtree for each possible outcome of that

test [29].

C4.5 is widely considered the standard implementation of a classification decision

tree. The learning process of a C4.5 decision tree involves finding the optimal test at

each node to base the split on (or decide that the node should be a leaf). C4.5 ex-

haustively tries every reasonable test criterion at each node and selects the test based

on some information gain criteria (see below). In the case of discrete attributes, this

simply means creating a branch and subtree for every possible value of the attribute.

For continuous attributes (the category spectral data falls into), C4.5 tries all (n− 1)

possible values to perform a binary split for each attribute (less than evaluates to

the left, greater than or equal to evaluates to the right), where n is the number of

training examples that have evaulated to the node in question. Because all attributes

are tested at each node, the algorithm can become quite expensive for large numbers

of attributes.

The information gain indicates the decrease in variability of the classes in each of

the subtrees. That is, it measures the uniformity of the class labels of the examples

in the child nodes as compared to the parent. The information of a node, given in

terms of the set T of training examples it contains, is given by:

H(T ) = −
∑

j

P (cj|T ) lnP (cj|T ) (3.13)

where the probability P (cj|T ) is simply

P (cj|T ) =
|{e : e ∈ T, Ye = cj}|

|T |
(3.14)

Finally, the information gain of a potential split ν is given as the information of

the parent minus the summation of the information content of its k children:
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Gain(ν) = H(T )−
∑

k

|Tk|

|T |
H(Tk) (3.15)

Where Tk is a set of examples that is the subset of T that evaluate to the same

child node. The potential split with the highest gain is selected and the algorithm

is repeated on the children. A node is declared to be a leaf if either a minimum

information gain threshold τi is not satisfied by the best potential split, or similarly if

the number of training examples in the node is less than the minimum examples per

leaf τe. Both τi and τe are user defined parameters that are optimized by the method

from Section 2.3.1.

3.3 Supervised Continuous Prediction Methods

3.3.1 Linear Regression

The regression method used here is based on a multivariate linear regression [30, 14]

that is used for predicting a single continuous variable Y given multiple continuous

input variables {X1, X2, ...Xm}. The model building process can be described as fol-

lows. Given a set of training examples T , find the set of coefficients β = {β0, β1, ...βm}

that gives the minimum value of g(T ), where

g(T ) =
∑

e∈T

(Ye − Y ′e )
2 (3.16)

Ye is the observed output variable of a training example e and

Y ′e = β0 + β1x1 + β2x2 + ...+ βmxm (3.17)

Y ′e is therefore the predicted value for Ye given values for which, in this case, are

reflectance values at varying wavelengths for the training example e. The problem as

stated can be solved numerically using well-known matrix algebra techniques. Further

details for finding are therefore omitted for the sake of brevity.
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3.3.2 Fuzzy K-Nearest Neighbors (Continuous)

Like it’s categorical counterpart, the continuous version of fuzzy k-nearest neighbors

(kNN) works by first calculating the distance from the test example to all training

examples (Equation 3.12). The target variables of of the k closest training examples

are used to determine the final prediction. Unlike the categorical version, where

each possible class has its own “vote” weighted by the distances, there is a single

summation of the target values weighted by the inverse distance (Equation 3.18).

Y ′e =
k
∑

i∈NearestNeighbors

Yi

dw
e

(3.18)

Once again, the exponent weight w and the number of nearest neighbors used to

calculate the prediction k are the control parameters to be optimized.

3.3.3 Regression Tree

A regression tree has the same fundamental structure as the C4.5 decision tree pre-

sented in Section 3.2.3, but is modified to handle a continuous target variable.

The first modification is the use of variance (Equation 3.19) instead of entropy

of the target variable to evaluate the improvement gained from a split. Like the

categorical version, the values of the discrimination metric for the example subsets

created from a split are summed, weighted by the number of examples in each subset

(Equation 3.20). The potential split with the greatest improvement in the variance

summation is selected and the algorithm repeats on the child nodes.

V (T ) =
∑

e∈T

(Ye − E(Ye))
2

|T | − 1
(3.19)

Gain(S) = V (T )−
∑

k

|Tk|

|T |
V (Tk) (3.20)
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The tree building process halts when the minimum permitted gain, τi, is not

satisfied by any potential splits, or the minimum number of examples per node, τe,

has been met.

When a node has been marked as a leaf, it requires a mechanism to make a con-

tinuous valued prediction. There are two possibilities. The first is a linear regression

model (from Section 3.3.1) built using the training examples that have evaluated to

that leaf. A boolean control parameter ρ determines which features are used in the

regression model. If ρ = true, then all of the features presented to the regression tree

are used. If ρ = false, then only those features that were used as split tests to reach

that leaf are used. If the linear regression should fail because of insufficient training

examples in the leaf or because it simply did not converge, then a mean model is

used as the continuous value prediction mechanism. A mean model is simply a model

that returns the average target value of a training set, ignoring all input features. It

is therefore quite näıve , but can return a reasonable prediction given a very small

training set.
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Chapter 4

Experimental Results

We now present an empirical study of the performance of ROWAS in one classification

task and one regression task. Sections of this chapter are reproduced from [31] and

[32].

4.1 Classification of AVIRIS Data

We obtained a data set that consisted of spectral measurements from an AVIRIS [33]

sensor and manually collected labels of the grass type of scanned regions [34]. The

AVIRIS sensor is a whiskbroom type sensor with a spectral response of 400 to 2500

nm, with 224 contiguous channels, approximately 10 nm wide. The spatial response

was 0.87 mrad, which translates to approximately 3.2×3.2 m pixels for readings taken

from 1700 ft (the altitude our test image was taken from). The set of ground labels

consisted of {Unclassified, Black Grama, Blue Grama, Road, Black Grama/Green Veg

Mixed, Blue Grama/Green Veg Mixed}. Figure 4.1 shows both a spectral sample of

the field and the locations of the ground labels.
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(a) Color composite of AVIRIS bands

400 nm, 1300 nm, and 2209 nm.

(b) Binary image of valid labels. Black

pixels are the locations that have corre-

sponding ground measurements.

Figure 4.1: Visualizations of the AVIRIS hyperspectral data and grass labels. Taken
October 20, 1999

4.1.1 AVIRIS Results

The top score for each supervised, unsupervised method pair is given in Table 4.1.

The score is the sample mean fraction of misclassifications obtained from the final

12-fold cross-validation performed for every set of top ranked features. It is therefore

effectively the average percent error. Also given is the number of bands used to achieve

the best score (denoted as ’count’), which indicates how effective the unsupervised

method was at selecting the best bands first. Only the first 100 bands were tested as

the computational expense became too severe at that point. Each model optimization

was allowed 100 random parameter sets.

The graphs of Figures 4.2 - 4.4 show the complete results for the three unsupervised

methods with the best scores for each supervised method. Also included are random

rankings and an average random plot. In addition to the rankings generated by the

supervised methods, six random rankings were tested using the same framework. The
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Table 4.1: The number (count) of top ranked bands used to achieve the best average
fraction of misclassifications, and the error itself.

NäıveBayes K-Nearest Neighbors Decision Tree

Error Count Error Count Error Count

Entropy .068 92 .024 38 .081 18

1st Deriv. .105 64 .040 42 .049 22

2nd Deriv. .105 24 .040 96 .053 48

Contrast .064 98 .032 42 .085 16

Ratio .113 14 .028 98 .049 18

Correlation .081 90 .045 52 .061 86

PCAr .065 68 .024 46 .117 42

Spectral Spacing .061 20 .020 62 .113 60

Best Random .048 10 .016 24 .081 8

Average Random .063 36 .027 76 .116 92

light blue plots correspond to these trials, and a bold red line corresponds to their

average. The best random ranking and the average were considered the baselines for

comparison.

NäıveBayes

NäıveBayes (Figure 4.2) does the least well as a supervised method. This is not

totally unexpected, as it makes the strong assumption of conditional independence

among the input features. The spectral information, however, is highly correlated,

especially among bands near each other in the spectrum. Also noteworthy in Figure

4.2 is that the performance seems to be asymptotic as the number of bands grows.

Because the different bands contain similar information, and because of the nature

of the algorithm that treats all bands equally, it’s not unlikely that the additional

bands are simply smoothing out the noise inherent in the data set and also the noise
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Figure 4.2: Näıve bayes results for classification of the AVIRIS data using intelligent ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method.
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generated when the data is binned.

The spectral spacing and contrast methods do the best out of the intelligent meth-

ods. Because of the issue of correlated features near each other in the spectrum, using

the most spread out bands for any given set of bands should cause the fewest problems

(although it doesn’t address the issue of whether those bands are actually relevant).

This is exactly what the spacing method does. The contrast method does the second

best, but the optimum is not reached until 94 bands are used. For our purposes, this

makes it little better than any other method, as all show asymptotic behavior and

an optimum using so many bands proves little about the suitability of the ranking

method for this domain. This is compounded by the fact that the average random

optimum was superior to all of the supervised methods except spectral spacing. The

supervised methods therefore are not considering the information relevant to achiev-

ing high accuracy with a näıve bayes classifier. Furthermore, the best random ranking

beat even the spectral spacing method. This ranking likely ordered bands in such a

way that they were not only reasonably uncorrelated, but also had high information

content in the top ranks.

Fuzzy K-Nearest Neighbors

Next was the instance based classifier, with the best results shown in Figure 4.3.

Instance based classifiers can be finely tuned to a data set due to its parameters that

can vary the behaviour of the classifier greatly. While slower than näıve bayes, it

typically performances at least comparably, and often better. Its accuracy depends

not only on the parameters, but also on the relevance of the feature set. Irrelevant

features are given as much weight as relevant ones, and simply add noise to the

predictions. Redundant features can give too much weight to some information at

the expense of that found in other features. This was verified by the fact that the

entropy and PCAr methods performed well, as they both produce rankings based on
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Figure 4.3: K-nearest neighbors results for classification of the AVIRIS data using intelligent ranking methods. Each plot
represents the trend of a sequentially growing number of top bands as determined by a particular ranking method.
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the information content of the bands. They do not take into account the redundancy

of bands, and are demonstrated to be inferior to the spectral spacing method. The

optimal point for the spacing method came at 62 bands, while the entropy and PCAr

methods performed best at 38 and 40 bands, respectively. Furthermore, the difference

between the scores was merely 0.004, which means that only a single example more

was classified correctly by the optimal model using the spectral spacing method. The

best random ranking performed another 0.004 better. This, again, shows that our

unsupervised methods do not produce optimal rankings, but that the efficiency of our

overall procedure allows enough methods to be evaluated to detect such deficiencies.

A further discussion of the significance of these differences follows in (4.1.2).

C4.5 Decision Tree

Finally, the C4.5 decision tree results are given in Figure 4.4. Decision trees do their

own greedy search over features that have the most impact on the information con-

tent of the predicted variable. While they normally perform well, they can suffer if

noisy or irrelevant features lead them astray early in the tree building process. Fur-

thermore, having very similar information in two features has been known to degrade

performance, as the decision for which of two similar features to use is determined

primarily by noise (the noisier feature may well be picked). Somewhat surprisingly,

spectral ratio and 1st and 2nd derivative ranking methods did by far the best. These

methods performed rather poorly with the other supervised methods. They even had

only half the error rate of the spectral spacing method, and nearly half the error

rate of the best random ranking (error rates of 0.049 for ratio and 1st deriv., 0.117

for spectral spacing, and 0.081 for the best random). These three ranking methods

work by comparing every band to a band immediately adjacent to it in the spectrum,

promoting those band pairs that exhibit less correlation. It’s likely this allowed these

two ranking methods to overcome the problem of poor performance due to similar
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Figure 4.4: Decision tree results for classification of the AVIRIS data using intelligent ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method.
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Table 4.2: The results of the McNemar significance test between the best sets of
predictions for every supervised method and other (compared) top methods. The con-
fidence level is the likelihood of the null hypothesis stating that the two unsupervised
methods generate the same population of predictions.

Supervised

Method

Best Unsupervised

Method

Compared

Unsupervised Method

Confidence

%

Name Count Name Count

NäıveBayes Random:4 10 Spectral Spacing 20 29.05

NäıveBayes Random:4 10 PCAr 68 22.72

Instance Based Random:6 24 Spectral Spacing 62 50.0

Instance Based Random:6 24 PCAr 46 25.00

Instance Based Random:6 24 Entropy 38 25.00

Decision Tree Ratio 18 1st Derivative 22 100.00

Decision Tree Ratio 18 2nd Derivative 48 50.00

Decision Tree Ratio 18 Random:4 8 59.82

features.

4.1.2 Significance Test

Due to the small differences in accuracy among the top ranking methods for the

respective classifiers, we employed a statistical significance test to determine the con-

fidence level of the superiority of the best methods. The McNemar test for categor-

ical/nominal data of dependent samples [35] was used. Dependent samples, which

are normally used in the social sciences, involve using the same test subjects with

different treatments, and measuring a boolean response after each treatment. The

two treatments are then compared to determine if one was more likely to cause the

response than the other. In our experiment, this equates to the same test example

being classified with two different classifiers. The boolean response is then whether

the classification was correct.
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The McNemar test compares two sets of predictions, A and B, as follows. The

number of test examples that classify correctly for one prediction set, but not the

other, are tallied for both sets of predictions. If we assume that the two sets of

boolean right/wrong values come from the same distribution (because the sets of

predictions are from the same distribution), then it follows that there is a πa = 0.5

and πb = 0.5 probability that prediction set A or B will be the correct one for

any given test example. That is, if only the examples that evaluate differently are

considered, then the results would be equally distributed if they came from the same

distribution. Using the binomial distribution, the likelihood of obtaining the observed

tallies is computed by (4.1).

P (≥ x) =
m
∑

r=x

(

m

r

)

(πb)
r(πa)

(m−r) (4.1)

Where x is the tally for the more accurate prediction set, m is the sum of the

two tallies, and πa = πb = 0.5 are the probabilities that one prediction set will be

correct when the other is not. The value obtained from (4.1) is the probability of

obtaining the observed predictions if the two prediction sets were drawn from the

same population. The assumption that πa = πb is therefore the null hypothesis, and

(4.1) is the confidence that it is true. A lower value therefore means it is more likely

that the ranking method with a higher accuracy was truly better than the one it is

being compared to.

There are two important considerations when using the McNemar test. First, it

only takes into account those test examples where the predictions were different. The

test does not rely on the total number of samples in any way. The second consideration

follows from the first: the test ignores both examples where both predictions are

correct and those where both are incorrect.

Confidence levels that the top ranking method was statistically the same as the

next best methods are given for every supervised method in Table 4.2. Again, the
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lower the confidence level, the more likely the best method is statistically superior.

When employing a significance test, it is common to require either a 95% or 99%

confidence level to accept a hypothesis. Therefore, to accept the hypothesis that the

best ranking for a supervised method is truly better than the second best rankings,

the value in Table 4.2 must fall below at most 5%. Not surprising because of the small

differences in accuracies, this never occurs. In all cases except ratio and 1st derivative

with decision tree, it can not be said with much certainty that the two prediction

sets are likely to be from the same population, either. If we assume that one of the

rankings tested (even if it is one of the random rankings) is at or near the theoretical

optimal accuracy for this data set, we can conclude that the top unsupervised methods

are performing at a level insignificantly below that optimum.

4.2 Regression of RDACS Data

The hyperspectral image data used in this section were collected from an aerial plat-

form with a Regional Data Assembly Centers Sensor (RDACS), model hyperspectral

(H-3), which is a 120-channel prism-grading, push-broom sensor developed by NASA.

Each image has 2500 rows, 640 columns, and 120 bands per pixel. The 120 bands

correspond to the visible and infrared range of 471 to 828 nm, recorded at a spectral

resolution of 3 nm. The motivation for choosing the wavelength range came from the

agricultural application domain where the 400-900 nm wavelength range responds

to plant characteristics very well [36] (Chapters 2-2 and 5-2) and has been used for

vegetation sensing in the past [9]. By selecting this wavelength range, the data anal-

ysis avoids issues related to water absorption bands (1400 nm and 1900 nm). In the

particular range we compensated only for low reflectance in the blue (450 nm) and

red (650 nm) wavelength sub-ranges due to the two chlorophyll absorption bands

[27] (Chapter 17.4) during reflectance calibration. While our experiments dealt with
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Figure 4.5: An RGB approximation of the gvillo field data taken April 26, 2000.

images of bare soil, we used a sensor that is optimal for vegetation observation as

that is what is likely to be available in agricultural applications (for the reasons given

above). Indeed, the experimental data set used in this study came from a series of

images taken over the entire growing season that were collected to study the relation-

ship between hyperspectral information and both bare soil properties before crops

had emerged and crop properties when they were present. For application specific

interpretations of data, each band index of the hyperspectral image was converted to

the band central wavelength by applying the following formula:

The images were collected from altitudes in the range of 1200 m to 4000 m on April

26, 2000. The spatial resolution of the images is approximately 1-m for the processed

Gvillo field located near the city of Columbia in the central part of Missouri. The

images were pre-processed to correct for geometrical distortions, calibrated for sensor

noise and illumination, and geo-registered [36] (Chapter 2-7). However, the images

were not pre-processed for any atmospheric corrections [27] (Chapter 10-4). An image

of the Gvillo site is shown in Figure 4.5.

Ground measurements of several variables (e.g., conductivity, elevation, organic

matter, phosphorous content) were collected by the Illinois Laboratory Agricultural

Remote Sensing (ILARS) using the Veris profiler 3000 made by Veris Technologies,

Salina, KS, and the data were provided by Dr. Tian. The hyperspectral images pro-

vided by Spectral Visions, a non-profit research organization funded by the NASA

Commercial Remote Sensing Program, were geo-registered with the ground measure-

ments by Dr. Gopalapillai (Department of Biological and Agricultural Engineering,
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University of Arkansas) and both ground and aerial measurements formed a training

data set covering about 19,000 m2 of the Gvillo field. We used the training data with

190 examples from the hyperspectral imagery collected at 4000 m altitude for evalu-

ating the band selection methods. The training data contained these hyperspectral

values and associated ground values of soil electrical conductivity. The field coverage

on the date of data collection was bare soil.

Among all ground variables, we anticipated to find relationships between hyper-

spectral values (reflected part of the electro-magnetic (EM) waves in the wavelength

range [471nm, 828 nm]) and surface/field characteristics that change electric and

magnetic properties according to the EM theory of wave propagation [37] (Chapter

5). Thus, electrical conductivity appeared as the number one candidate among other

variables. We verified with a simple linear correlation method that there exists a

significant enough correlation (around 0.5) between the conductivity variable and hy-

perspectral values (190 conductivity values were correlated with 190 hyperspectral

values for each band to obtain 120 correlation values averaging near 0.5). The con-

ductivity values ranged from [22.4262, 52.66] miliSiemens per meter (mS/m) with

the sample mean equal to 36.10836 and the standard deviation equal to 5.212215.

Based on the known classification of soil properties [38] as a function of conductivity

with approximate class conductivity ranges of sand (0,2], silt [2, 20] and clay [10,

1000], we concluded that the ground soil consisted of silt and clay soil types. Soil

electrical conductivity is an important characteristic considered for crop yield predic-

tion in the agricultural application. Electrical conductivity indirectly characterizes

several important soil characteristics including soil texture (the relative amount of

sand-silt-clay) and salinity, which affects the crops ability to acquire water.
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Table 4.3: The number (count) of top ranked bands used to achieve the best sample
mean absolute error, and the error itself in milliSiemens/meter (mS/m).

Linear Regression K-Nearest Neighbors Regression Tree

Error Count Error Count Error Count

Entropy 1.99 6 2.71 112 1.90 6

1st Deriv. 1.99 8 2.65 14 1.98 8

2nd Deriv. 2.01 8 2.66 106 1.96 6

Contrast 2.08 14 2.70 110 2.02 14

Ratio 2.05 10 2.68 108 1.92 6

Correlation 2.03 10 2.48 16 1.90 8

PCAr 2.10 16 2.71 108 2.07 16

Spectral Spacing 2.04 8 2.55 4 1.93 6

Best Random 2.01 6 2.53 8 1.89 6

Average Random 2.04 12 2.67 40 1.97 6

4.2.1 RDACS Results

As before, the top score for each supervised, unsupervised method pair is given in

Table 4.3. The score is the sample mean absolute error obtained from the final 12-

fold cross-validation performed for every set of top ranked features. Also given is the

number of bands used to achieve the best score (denoted as ’count’), which indicates

how effective the unsupervised method was at selecting the best bands first. The

experiment was allowed to run until all 120 bands had been evaluated. Each model

optimization was allowed 300 random parameter sets to try.

Linear Regression

Nearly all of the ranking methods are competitive when matched with a linear re-

gression model (Figure 4.6). The top methods are entropy and 1st derivative, but the
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Figure 4.6: Linear regression results for regression of the RDACS data using intelligent ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method.
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difference in average error between those methods and, say, 2nd derivative or the top

random method is negligible. As compared to the other supervised methods, linear

regression performs nearly as well as the regression tree and significantly better than

the nearest neighbors method.

Also of interest is that linear regression shows the most pronounced parabolic

behavior. The optimal number of bands is reached quickly and then steadily declines.

We believe this shows that the majority of useful information in the hyperspectral

imagery can be gleened from just a few bands. It also reflects a trend we expected

when comparing the classification to regression methods. The classification methods

are more resilient to small deviations in their predictions. This is because classification

methods can be thought of as predicting a continuous valued probability for each class,

and returning the best. A small change in these probabilities will not cause a change

in accuracy, so long as the change is not so extreme that the probabilities change

their ordering from highest to lowest. In contrast, a set of small detrimental changes

to a set of regression predictions will each add to the final reported error shown in

the graphs. This phenomenon is also apparent when comparing the C4.5 Decision

Tree and the Regression Tree.

Fuzzy K-Nearest Neighbors

The fuzzy k-nearest neighbors did the least well on the continuous value prediction

problem. Not only was the overall error high, the optimal number of bands using

many of the ranking methods was quite high due to the asymptotic nature of the

error function (Figure 4.7). The asymptotic behavior was likely due to the local

search nature of the algorithm. Because only training examples near a test example

in the feature space are considered for a prediction, the higher dimensionality would

not cause problems if the lower ranked features contained the same information as

the higher ranked features (which the analysis of linear regression seems to imply).
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Figure 4.7: Fuzzy k-nearest neighbors results for regression of the RDACS data using intelligent ranking methods. Each plot
represents the trend of a sequentially growing number of top bands as determined by a particular ranking method.
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In fact, the information contained in the lower ranked bands seems to smooth out the

noise contained in the better ranked bands, causing a slight increase in accuracy as

the number of top ranked bands used in prediction is increased. This was not a very

significant decrease in error, however, as the approximate error gradient for curves

when the band count was larger than 6 was less than 0.002.

The few methods that were able to overcome the aymptotic, but poor, perfor-

mance were correlation, spectral spacing, and one of the random rankings. The two

intelligent methods of these work by selecting the least similar bands, and is likely the

random ranking that performed well coincidently did the same. We can hypothesis

that the optimal number of bands determined by the Hughes Phenomenon was quite

low (under 14), and only these best methods were able to present all of the relevant

information to the learning algorithm in 14 bands or less.

Regression Tree

Our final supervised prediction method was the regression tree, shown in Figure 4.8.

It provided the best regression accuracy with some unusual trends. The entropy,

correlation, and best random ranking methods performed the best with errors near

1.90 mS/m using either 6 or 8 bands. That fact that entropy is an information content

based method and correlation is a redundancy measure shows that several methods

may exist that provide good empirical performance in any given domain.

The plots in Figure 4.8 quickly reach an optimal point between 6 and 16 bands,

then degrade continuously before plateauing near 80 bands. The form of the graph

before the plateau is quite similar to that of the linear regression graph of Figure 4.6.

This is not surprising as the final predictions made by the regression tree are simply

linear regression models that use certain subsets of features and training examples

as determined by the tree structure. The plateaus are easily explained if we recall

the behavior of the regression tree when a leaf has too few examples relative to the
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Figure 4.8: Regression Tree results for regression of the RDACS data using intelligent ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method.
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dimensionality of the data set and the linear regression fails. In such a situation

a mean model is returned, which will yield a single accuracy score if the data set

remains constant. A single split of the 176 example training set used in 12-fold cross-

validation would lead to leaves containing about 90 examples. It is not surprising,

therefore, that a linear regression model built in 80 dimensions would not converge

with so few examples relative to the number of dimensions, and the mean model

would be returned. As is shown in the graph, this is independent of the ranking

method.
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Chapter 5

Summary and Conclusions

In this thesis we have (a) identified the constraints a modern feature selection system

must address, (b) developed a methodology that works within those constraints, and

(c) empirically tested the methodology in the domain of hyperspectral image analysis.

5.1 Feature Selection Considerations

The issues facing a feature selection strategy are relevance, redundancy, sample qual-

ity, computation time, and user effort. These issues were presented in detail in Chap-

ter 2. The considerations can be summarized as follows.

Noise is an obvious problem as it obscures the true nature of the data and their

internal relationships. Noise can be in the form of sensor noise, but irrelevant features

can also be considered noise as they increase the complexity of the problem without

adding any useful information (Section 2.1.1) . The Hughes Phenomenon also affects

the selection of best features. It states that an increase in dimensions without an

increase in data points reduces the validity of density measurements, and therefore

can degrade the accuracy of prediction models that use them. The result is that there

is an optimal number of features to use for a particular sized data set (in terms of

sample size) with a given modeling technique (Section 2.1.2). Furthermore, the central
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limit theorem tells us that the parameters of a sample’s distribution will vary from

the parameters of their true populations according to known rules. We can therefore

expect that as the number of available features to choose from goes up, we can expect

the likelihood of having as many “good” features as the Hughes Phenomenon dictates

to also increase (Section 2.1.1).

Unfortunately, determining the best bands can not be determined directly, as the

true population parameters are unknown. Because it is therefore necessary to use

some form of heuristic search for the best bands, the NFL theorem comes into play.

The NFL theorem tells us that no optimization technique is superior in all domains.

When applied to the problem at hand, it states that the best feature selection tech-

nique cannot be known in advance, unless some reliable domain knowledge exists,

which we assume is not the case in this thesis (Section 2.2). We purposely make this

assumption for the following reason. Domain experts’ time is vastly more valuable

than computer resources, and the gap will only widen as mass-produced computation

systems continue to fall in price. If the only reason to tap into a domain expert’s

time to save the computational burden of trying several different feature selection

techniques, we believe the costs associated with doing so are unjustified (Section 2.2).

5.2 ROWAS

To overcome the considerations given above, we proposed a general framework for a

joint feature subset and prediction model system. We have called this methodology

Rank Ordered with Accuracy Selection (ROWAS), which was presented in Section

2.3.1. The method matches a set of computationally efficient, unsupervised ranking

methods with a set of supervised prediction methods and a somewhat expensive, but

highly accurate, error evaluation method. As sets of an incrementally larger number

of top ranked bands are given to the supervised methods and evaluated, the optimal
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number of bands for a given (ranking, prediction method) pair emerges. The overall

best combination of feature subset and prediction method has a high chance of being

near the theoretical optimal accuracy for a given data set. We can make this claim if

a sufficient number of (ranking, prediction method) pairs are explored to satisfy the

restrictions of the No Free Lunch Theorem.

5.3 Results

We tested our methodology on two data sets from the hyperspectral image analysis

domain. The classification problem used AVIRIS data to predict the grass type labels

in an image taken in New Mexico. We also used our methodology in a continuous

value prediction problem in the agriculture domain. Data from an RDACS sensor

was used to predict the electrical conductivity of soil in an early season production

field.

In the classification problem, the combination of the spectral spacing ranking

method and k-nearest neighbors classifier performed the best, although one of the

random rankings performed slightly better (also with kNN). A statistical significance

test, however, showed that the small differences in error among the top methods

were not conclusively significant. The test was even rather conservative, as it took

into account only those examples that were classified differently, and was therefore

independent of the total number of examples in the test set.

For the regression problem, the regression tree coupled with one of the random

rankings was marginally better than when coupled with the entropy or correlation

rankings. While no formal statistical analysis of was done in this part of the study,

the average difference between the random and next best rankings was .01 mS/m

in predicting a variable that ranged from 22.42 mS/m to 52.66 mS/m. We do not

believe these difference are significant, and consider the three top ranking methods
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to be equally valid when used with the regression tree.

5.4 Conclusions

We believe the prediction accuracies obtained are quite good and would meet any real

world performance requirements. The fact that the same ranking methods were able

to be used without modification in two distinct hyperspectral prediction problems

also reflects well on the methodology. We believe such code reuse allows the end user

experience to take on a simplicity that is a necessity for any successful, real world

application of a machine learning technique. By removing the burden of feature

subset and prediction method selection from the end user, and placing that burden

on increasingly inexpensive computing technology, the application of machine learning

can be moved from corporate and university research departments into the hands of

those concerned about the subject being analyzed, not cutting edge machine learning

technology. We believe our methodology can be the basis for applications that fulfill

this key requirement of successful technology.
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Appendix A

Results of Random Rankings

This section provides feature count versus error plots when random rankings were

used in the experiments as described in Chapter ??. First, the three supervised

classification methods of Section 3.2 are used with random rankings of the AVIRIS

data of Section 4.1. Second, the three supervised regression methods of Section 3.3

are used with random rankings of the data of Section 4.2.
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Figure A.1: Näıve bayes results for classification of the AVIRIS data using intelligent ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method. The bold red Random
Average plot is identical to the Random Average plot in Figure 4.2
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Figure A.2: K-nearest neighbors results for classification of the AVIRIS data using intelligent ranking methods. Each plot
represents the trend of a sequentially growing number of top bands as determined by a particular ranking method. The bold
red Random Average plot is identical to the Random Average plot in Figure 4.3.
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Figure A.3: Decision tree results for classification of the AVIRIS data using random ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method. The bold red Random
Average plot is identical to the Random Average plot in Figure 4.4.
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Figure A.4: Linear regression results for regression of the RDACS data using random ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method. The bold red Random
Average plot is identical to the Random Average plot in Figure 4.6.
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Figure A.5: Fuzzy k-nearest neighbors results for regression of the RDACS data using random ranking methods. Each plot
represents the trend of a sequentially growing number of top bands as determined by a particular ranking method.The bold red
Random Average plot is identical to the Random Average plot in Figure 4.7.
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Figure A.6: Regression Tree results for regression of the RDACS data using random ranking methods. Each plot represents
the trend of a sequentially growing number of top bands as determined by a particular ranking method.The bold red Random
Average plot is identical to the Random Average plot in Figure 4.8
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